References

[1]

Ienkaran Arasaratnam and Simon Haykin. Square-root quadrature kalman filtering. IEEE Transactions on Signal Processing, 56(6):2589–2593, jun 2008. doi:10.1109/tsp.2007.914964.

[2]

Ienkaran Arasaratnam, Simon Haykin, and Robert J. Elliott. Discrete-time nonlinear filtering algorithms using gauss–hermite quadrature. Proceedings of the IEEE, 95(5):953–977, may 2007. doi:10.1109/jproc.2007.894705.

[3]

Samuel Blackman and Robert Popoli. Design and analysis of modern tracking systems. Artech House, 1999. ISBN 1580530060.

[4]

WH Clohessy and RS Wiltshire. Terminal guidance system for satellite rendezvous. Journal of the Aerospace Sciences, 27(9):653–658, 1960.

[5]

John L Crassidis and John L Junkins. Optimal estimation of dynamic systems. Chapman and Hall/CRC, 2011.

[6]

Uri Desai. A Comparative Study of Estimation Models for Satellite Relative Motion. PhD thesis, Texas A&M University, 2013.

[7]

Ying Fan, Yonggang Zhang, Guoqing Wang, Xiaoyu Wang, and Ning Li. Maximum correntropy based unscented particle filter for cooperative navigation with heavy-tailed measurement noises. Sensors, 18(10):3183, 2018.

[8]

Gene H. Golub and John H. Welsch. Calculation of gauss quadrature rules. Mathematics of Computation, 23(106):221–221, may 1969. doi:10.1090/s0025-5718-69-99647-1.

[9]

Wayne E Hoover. Algorithms for confidence circles and ellipses. Technical Report, National Oceanic and Atmospheric Administration, 1984.

[10]

Bowen Hou, Zhangming He, Dong Li, Haiyin Zhou, and Jiongqi Wang. Maximum correntropy unscented kalman filter for ballistic missile navigation system based on sins/cns deeply integrated mode. Sensors, 18(6):1724, 2018.

[11]

Peter Jäckel. A note on multivariate gauss-hermite quadrature. Working paper, 2005. URL: http://202.31.197.199/~mhlee/paper/OLD.Apr.28.2014/J.Y.Ji/ANoteOnMultivariateGaussHermiteQuadrature.pdf.

[12]

Christopher D Karlgaard and Frederick H Lutze. Second-order relative motion equations. Journal of Guidance, Control, and Dynamics, 26(1):41–49, 2003.

[13]

Benjamin O Lange and Robert G Smith. The application of floquet theory to the computation of small orbital perturbations over long time intervals using the tschaunerhempel equations. Technical Report, Stanford Univ Ca Dept Of Aeronautics And Astronautics, 1965.

[14]

X Rong Li and Vesselin P Jilkov. Survey of maneuvering target tracking: dynamic models. In Signal and Data Processing of Small Targets 2000, volume 4048, 212–235. SPIE, 2000.

[15]

Zhuowei Liu, Shuxin Chen, Hao Wu, Renke He, and Lin Hao. A students t mixture probability hypothesis density filter for multi-target tracking with outliers. Sensors, 18(4):1095, 2018.

[16]

Mohamed Okasha and Brett Newman. Guidance, navigation and control for satellite proximity operations using tschauner-hempel equations. The Journal of the Astronautical Sciences, 60(1):109–136, 2013.

[17]

William H Press, Saul A Teukolsky, William T Vetterling, and Brian P Flannery. Numerical recipes in C : the art of scientific computing. Cambridge University Press (CUP), jan 1992. ISBN 0521431085. doi:10.1017/s0269964800000565.

[18]

Alex Quinchia, Gianluca Falco, Emanuela Falletti, Fabio Dovis, and Carles Ferrer. A comparison between different error modeling of MEMS applied to GPS/INS integrated systems. Sensors, 13(8):9549–9588, 2013.

[19]

Michael Roth, Emre Özkan, and Fredrik Gustafsson. A student's t filter for heavy tailed process and measurement noise. In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, 5770–5774. IEEE, 2013.

[20]

Simo Särkkä, Jouni Hartikainen, Lennart Svensson, and Fredrik Sandblom. On the relation between gaussian process quadratures and sigma-point methods. Journal of Advances in Information Fusion, 2015.

[21]

Dan Simon. Optimal state estimation: Kalman, H infinity, and nonlinear approaches. John Wiley & Sons, 2006.

[22]

Ondřej Straka and Jindřich Duník. Stochastic integration student's-t filter. In 2017 20th International Conference on Information Fusion (Fusion), 1–8. IEEE, 2017.

[23]

J Tschauner and P Hempel. Rendezvous zu einem in elliptischer bahn umlaufenden ziel. Astronautica Acta, 11(2):104–+, 1965.

[24]

Jur van den Berg. Extended lqr: locally-optimal feedback control for systems with non-linear dynamics and non-quadratic cost. In Robotics Research, pages 39–56. Springer, 2016.

[25]

Rudolph Van Der Merwe, Arnaud Doucet, Nando and De Freitas, and Eric Wan. The Unscented Particle Filter. Technical Report CUED/F-INFENG/TR 380, Cambridge University, 2000.

[26]

Rudolph Van Der Merwe, Arnaud Doucet, Nando De Freitas, and Eric A Wan. The unscented particle filter. In Advances in neural information processing systems, 584–590. 2001.

[27]

Jordi Vila-Valls, Pau Closas, Carles Fernández-Prades, and Juan A Fernandez-Rubio. Nonlinear bayesian filtering in the gaussian scale mixture context. In 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO), 529–533. IEEE, 2012.

[28]

Jordi Vila-Valls, Carles Fernández-Prades, Pau Closas, and Juan A Fernandez-Rubio. Bayesian filtering for nonlinear state-space models in symmetric α-stable measurement noise. In 2011 19th European Signal Processing Conference, 674–678. IEEE, 2011.

[29]

Eric A Wan and Rudolph Van Der Merwe. The unscented kalman filter for nonlinear estimation. In Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No. 00EX373), 153–158. Ieee, 2000.