Coverage for src/gncpy/math/__init__.py: 72%

143 statements  

« prev     ^ index     » next       coverage.py v7.6.1, created at 2024-09-13 06:15 +0000

1"""Useful math utility functions.""" 

2import warnings 

3 

4import numpy as np 

5from copy import deepcopy 

6 

7 

8def get_jacobian(x, fnc, f_args=(), step_size=10**-7): 

9 """Calculates the jacobian of a function. 

10 

11 Numerically calculates the jacobian using the central difference method. 

12 

13 Parameters 

14 ---------- 

15 x : numpy array 

16 The point to evaluate about. 

17 fnc : callable 

18 The function to evaluate, must be of the form `f(x, *f_args)`. 

19 f_args : tuple, optional 

20 Additional argumets for `fnc`. The default is (). 

21 step_size : float, optional 

22 The step size to use when calculating the jacobian. The default is 

23 10**-7. 

24 

25 Returns 

26 ------- 

27 jac : N x 1 numpy array 

28 The jacobain of the function 

29 """ 

30 inv_step2 = 1 / (2 * step_size) 

31 n_vars = x.size 

32 J = np.zeros((n_vars, 1)) 

33 for ii in range(n_vars): 

34 x_r = x.copy().astype(float) 

35 x_l = x.copy().astype(float) 

36 x_r[ii] += step_size 

37 x_l[ii] -= step_size 

38 J[ii] = (fnc(x_r, *f_args) - fnc(x_l, *f_args)) 

39 return J * inv_step2 

40 

41 

42def get_hessian(x, fnc, f_args=(), step_size=np.finfo(float).eps**(1 / 4)): 

43 """Calculates the hessian of a function. 

44 

45 Numerically calculates the hessian using the central difference method. 

46 

47 Parameters 

48 ---------- 

49 x : numpy array 

50 DESCRIPTION. 

51 fnc : callable 

52 The function to evaluate, must be of the form `f(x, *f_args)`. 

53 f_args : tuple, optional 

54 Additional arguments for the function. The default is (). 

55 step_size : float, optional 

56 Step size for differentiation. The default is np.finfo(float).eps**(1 / 4). 

57 

58 Returns 

59 ------- 

60 N x N array 

61 Hessian of the function. 

62 

63 """ 

64 den = 1 / (4 * step_size**2) 

65 n_vars = x.size 

66 H = np.zeros((n_vars, n_vars)) 

67 for ii in range(n_vars): 

68 delta_i = np.zeros(x.shape) 

69 delta_i[ii] = step_size 

70 

71 x_ip = x.astype(float) + delta_i 

72 x_im = x.astype(float) - delta_i 

73 for jj in range(n_vars): 

74 # only get upper triangle since hessian is symmetric 

75 if jj < ii: 

76 continue 

77 delta_j = np.zeros(x.shape) 

78 delta_j[jj] = step_size 

79 

80 x_ip_jp = x_ip + delta_j 

81 x_ip_jm = x_ip - delta_j 

82 x_im_jm = x_im - delta_j 

83 x_im_jp = x_im + delta_j 

84 

85 H[ii, jj] = (fnc(x_ip_jp, *f_args) - fnc(x_ip_jm, *f_args) 

86 - fnc(x_im_jp, *f_args) + fnc(x_im_jm, *f_args)) * den 

87 

88 # fill full H matrix from upper triangle 

89 for ii in range(n_vars): 

90 for jj in range(n_vars): 

91 if jj >= ii: 

92 break 

93 H[ii, jj] = H[jj, ii] 

94 return H 

95 

96 

97def get_state_jacobian(t, x, fncs, f_args, u=None, **kwargs): 

98 r"""Calculates the jacobian matrix for the state of a state space model. 

99 

100 Notes 

101 ----- 

102 Numerically calculates the jacobian using the central difference method 

103 for the state of the standard statespace model 

104 

105 .. math:: 

106 \dot{x} = f(t, x, u) 

107 

108 

109 Parameters 

110 ---------- 

111 t : float 

112 timestep to evaluate at. 

113 x : N x 1 numpy array 

114 state to calculate the jocobain about. 

115 fncs : list 

116 1 function per state in order. They must have the signature 

117 `f(t, x, u, *f_args)` if `u` is given or `f(t, x, *f_args)` if `u` is 

118 not given. 

119 f_args : tuple 

120 Additional arguemnts to pass to each function in `fncs`. 

121 u : Nu x 1 numpy array, optional 

122 the control signal to calculate the jacobian about. The default is 

123 None. 

124 \*\*kwargs : dict, optional 

125 Additional keyword arguments for :meth:`gncpy.math.get_jacobian`. 

126 

127 Returns 

128 ------- 

129 jac : N x N numpy array 

130 Jaccobian matrix. 

131 """ 

132 n_states = x.size 

133 A = np.zeros((n_states, n_states)) 

134 for row in range(0, n_states): 

135 if u is not None: 

136 res = get_jacobian(x.copy(), 

137 lambda _x, *_f_args: fncs[row](t, _x, u, *_f_args), 

138 f_args=f_args, **kwargs) 

139 else: 

140 res = get_jacobian(x.copy(), 

141 lambda _x, *_f_args: fncs[row](t, _x, *_f_args), 

142 f_args=f_args, **kwargs) 

143 

144 A[[row], :] = res.T 

145 return A 

146 

147 

148def get_input_jacobian(t, x, u, fncs, f_args, **kwargs): 

149 r"""Calculates the jacobian matrix for the input of a state space model. 

150 

151 Notes 

152 ----- 

153 Numerically calculates the jacobian using the central difference method 

154 for the input of the standard statespace model 

155 

156 .. math:: 

157 \dot{x} = f(t, x, u) 

158 

159 

160 Parameters 

161 ---------- 

162 t : float 

163 timestep to evaluate at. 

164 x : N x 1 numpy array 

165 state to calculate the jocobain about. 

166 u : Nu x 1 numpy array 

167 control input to calculate the jocobian about. 

168 fncs : list 

169 1 function per state in order. They must have the signature 

170 `f(t, x, u, *f_args)` if `u` is given or `f(t, x, *f_args)` if u is 

171 not given. 

172 f_args : tuple 

173 Additional arguemnts to pass to each function in `fncs`. 

174 \*\*kwargs : dict, optional 

175 Additional keyword arguments for :meth:`gncpy.math.get_jacobian`. 

176 

177 Returns 

178 ------- 

179 jac : N x Nu numpy array 

180 jacobian matrix. 

181 

182 """ 

183 n_states = x.size 

184 n_inputs = u.size 

185 B = np.zeros((n_states, n_inputs)) 

186 for row in range(0, n_states): 

187 res = get_jacobian(u.copy(), 

188 lambda _u, *_f_args: fncs[row](t, x, _u, *_f_args), 

189 **kwargs) 

190 B[[row], :] = res.T 

191 return B 

192 

193 

194def rk4(f, x, h, **kwargs): 

195 """Implements a classic Runge-Kutta integration RK4. 

196 

197 Parameters 

198 ---------- 

199 f : callable 

200 function to integrate, must take x as the first argument and arbitrary 

201 kwargs after 

202 x : numpy array, or float 

203 state needed by function 

204 h : float 

205 step size 

206 

207 Returns 

208 ------- 

209 state : numpy array, or float 

210 Integrated state 

211 """ 

212 k1 = h * f(x, **kwargs) 

213 k2 = h * f(x + 0.5 * k1, **kwargs) 

214 k3 = h * f(x + 0.5 * k2, **kwargs) 

215 k4 = h * f(x + k3, **kwargs) 

216 return x + (1 / 6) * (k1 + 2 * k2 + 2 * k3 + k4) 

217 

218 

219def rk4_backward(f, x, h, **kwargs): 

220 """Implements a backwards classic Runge-Kutta integration RK4. 

221 

222 Parameters 

223 ---------- 

224 f : callable 

225 function to reverse integrate, must take x as the first argument and 

226 arbitrary kwargs after 

227 x : numpy array, or float 

228 state needed by function 

229 h : float 

230 step size 

231 

232 Returns 

233 ------- 

234 state : numpy array, or float 

235 Reverse integrated state 

236 """ 

237 k1 = f(x, **kwargs) 

238 k2 = f(x - 0.5 * h * k1, **kwargs) 

239 k3 = f(x - 0.5 * h * k2, **kwargs) 

240 k4 = f(x - h * k3, **kwargs) 

241 return x - (h / 6) * (k1 + 2 * k2 + 2 * k3 + k4) 

242 

243 

244def log_sum_exp(lst): 

245 """Utility function for a log-sum-exponential trick. 

246 

247 Parameters 

248 ---------- 

249 lst : list 

250 list of values. 

251 

252 Returns 

253 ------- 

254 tot : float 

255 result of log-sum-exponential calculation. 

256 """ 

257 if len(lst) == 0: 

258 return None 

259 m_val = max(lst) 

260 tot = 0 

261 for x in lst: 

262 tot = tot + np.exp(x - m_val) 

263 tot = np.log(tot) + m_val 

264 return tot 

265 

266 

267def gamma_fnc(alpha): 

268 r"""Implements a gamma function. 

269 

270 Notes 

271 ----- 

272 This implements the gamma function as 

273 

274 .. math:: 

275 \Gamma(\alpha) = (\alpha -1)! 

276 

277 Todo 

278 ---- 

279 Add support for complex number input 

280 

281 Parameters 

282 ---------- 

283 alpha : int 

284 number to evaluate the gamma function at. 

285 

286 Returns 

287 ------- 

288 int 

289 result of the gamma function. 

290 

291 """ 

292 return np.math.factorial(int(alpha - 1)) 

293 

294 

295def get_elem_sym_fnc(z): 

296 if z.size == 0: 

297 esf = np.array([[1]]) 

298 else: 

299 z_loc = deepcopy(z).reshape(z.size) 

300 i_n = 1 

301 i_nminus = 2 

302 

303 n_z = z_loc.size 

304 F = np.zeros((2, n_z)) 

305 

306 for n in range(1, n_z + 1): 

307 F[i_n - 1, 0] = F[i_nminus - 1, 0] + z_loc[n - 1] 

308 for k in range(2, n + 1): 

309 if k == n: 

310 with warnings.catch_warnings(): 

311 warnings.filterwarnings("error", message=".*overflow encountered in double_scalars.*") 

312 try: 

313 F[i_n - 1, k - 1] = z_loc[n - 1] * F[i_nminus - 1, k - 1 - 1] 

314 except RuntimeWarning: 

315 F[i_n - 1, k - 1] = np.finfo(float).max 

316 else: 

317 with warnings.catch_warnings(): 

318 warnings.filterwarnings("error", message=".*overflow encountered in double_scalars.*") 

319 try: 

320 F[i_n - 1, k - 1] = F[i_nminus - 1, k - 1] \ 

321 + z_loc[n - 1] * F[i_nminus - 1, k - 1 - 1] 

322 except RuntimeWarning: 

323 F[i_n - 1, k - 1] = np.finfo(float).max 

324 tmp = i_n 

325 i_n = i_nminus 

326 i_nminus = tmp 

327 esf = np.hstack((np.array([[1]]), F[[i_nminus - 1], :])) 

328 esf = esf.reshape((esf.size, 1)) 

329 return esf 

330 

331 

332def weighted_sum_vec(w_lst, x_lst): 

333 """Calculates the weighted sum of a list of vectors. 

334 

335 Parameters 

336 ---------- 

337 w_lst : list of floats, or N numpy array 

338 list of weights. 

339 x_lst : list of n x 1 numpy arrays, or N x n x 1 numpy array 

340 list of vectors to be weighted and summed. 

341 

342 Returns 

343 ------- 

344 w_sum : n x 1 numpy array 

345 weighted sum of inputs. 

346 """ 

347 if isinstance(x_lst, list): 

348 x = np.stack(x_lst) 

349 else: 

350 x = x_lst 

351 if isinstance(w_lst, list): 

352 w = np.array(w_lst) 

353 else: 

354 w = w_lst 

355 return np.sum(w.reshape((-1,) + (1,) * (x.ndim - 1)) * x, axis=0) 

356 

357 

358def weighted_sum_mat(w_lst, P_lst): 

359 """Calculates the weighted sum of a list of matrices. 

360 

361 Parameters 

362 ---------- 

363 w_lst : list of floats or numpy array 

364 list of weights. 

365 P_lst : list of n x m numpy arrays or N x n x n numpy array 

366 list of matrices to be weighted and summed. 

367 

368 Returns 

369 ------- 

370 w_sum : n x m numpy array 

371 weighted sum of inputs. 

372 """ 

373 if isinstance(P_lst, list): 

374 cov = np.stack(P_lst) 

375 else: 

376 cov = P_lst 

377 if isinstance(w_lst, list): 

378 w = np.array(w_lst) 

379 else: 

380 w = w_lst 

381 return np.sum(w.reshape((-1,) + (1,)*(cov.ndim - 1)) * cov, axis=0) 

382 

383 

384def gaussian_kernel(x, sig): 

385 """Implements a Gaussian Kernel. 

386 

387 Parameters 

388 ---------- 

389 x : float 

390 point to evaluate the kernel at. 

391 sig : float 

392 kernel parameter. 

393 

394 Returns 

395 ------- 

396 float 

397 kernel value. 

398 

399 """ 

400 return np.exp(-x**2 / (2 * sig**2)) 

401 

402 

403def epanechnikov_kernel(x): 

404 """Implements the Epanechnikov kernel. 

405 

406 Parameters 

407 ---------- 

408 x : numpy array 

409 state to evaluate the kernel at 

410 

411 Returns 

412 ------- 

413 val : float 

414 kernal value 

415 """ 

416 def calc_vn(n): 

417 if n == 1: 

418 return 2 

419 elif n == 2: 

420 return np.pi 

421 elif n == 3: 

422 return 4 * np.pi / 3 

423 else: 

424 return 2 * calc_vn(n - 2) / n 

425 

426 n = x.size 

427 mag2 = np.sum(x**2) 

428 if mag2 < 1: 

429 vn = calc_vn(n) 

430 val = (x.size + 2) / (2 * vn) * (1 - mag2) 

431 else: 

432 val = 0 

433 return val